Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
mBio ; 15(3): e0028224, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38385704

ABSTRACT

The complement system can be viewed as a "moderator" of innate immunity, "instructor" of humoral immunity, and "regulator" of adaptive immunity. While sex is known to affect humoral and cellular immune systems, its impact on complement in humans and rhesus macaques, a commonly used non-human primate model system, has not been well studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 72 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test for use with macaque samples, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between humans and rhesus, suggesting differential recognition of glycans and balance between classical and alternative activation pathways. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sex-associated differences. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand knowledge of sex-associated differences in the complement system in humans, identifying differences absent from rhesus macaques.IMPORTANCEThe complement system is a critical part of host defense to many bacterial, fungal, and viral infections. In parallel, rich epidemiological, clinical, and biomedical research evidence demonstrates that sex is an important biological variable in immunity, and many sex-specific differences in immune system are intimately tied with disease outcomes. This study focuses on the intersection of these two factors to define the impact of sex on complement pathway components and activities. This work expands our knowledge of sex-associated differences in the complement system in humans and also identifies the differences that appear to be absent in rhesus macaques, a popular non-human primate model. Whereas differences between species suggest potential limitations in the ability of macaque model to recapitulate human biology, knowledge of sex-based differences in humans has the potential to inform clinical research and practice.


Subject(s)
Complement System Proteins , Immunity, Innate , Animals , Humans , Male , Female , Macaca mulatta
2.
Res Sq ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-36824869

ABSTRACT

Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.

4.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961263

ABSTRACT

The complement system can be viewed as a 'moderator' of innate immunity, 'instructor' of humoral immunity, and 'regulator' of adaptive immunity. While sex and aging are known to affect humoral and cellular immune systems, their impact on the complement pathway in humans and rhesus macaques, a commonly used non-human primate model system, have not been well-studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 75 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between human and rhesus, suggesting differential recognition of glycans. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sexual dimorphism. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand our knowledge of sexual dimorphism in the complement system in humans, identifying differences that appear to be absent from rhesus macaques.

5.
Nat Commun ; 14(1): 7062, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923717

ABSTRACT

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macaca mulatta , COVID-19/pathology , Respiratory Aerosols and Droplets , Lung/pathology , Antibodies, Viral , Virus Replication , Antibodies, Monoclonal
6.
Front Immunol ; 14: 1271686, 2023.
Article in English | MEDLINE | ID: mdl-37854587

ABSTRACT

Introduction: Neutralizing antibodies (Abs) are one of the immune components required to protect against viral infections. However, developing vaccines capable of eliciting neutralizing Abs effective against a broad array of HIV-1 isolates has been an arduous challenge. Objective: This study sought to test vaccines aimed to induce Abs against neutralizing epitopes at the V1V2 apex of HIV-1 envelope (Env). Methods: Four groups of rabbits received a DNA vaccine expressing the V1V2 domain of the CRF01_AE A244 strain on a trimeric 2J9C scaffold (V1V2-2J9C) along with a protein vaccine consisting of an uncleaved prefusion-optimized A244 Env trimer with V3 truncation (UFO-BG.ΔV3) or a V1V2-2J9C protein and their respective immune complexes (ICs). These IC vaccines were made using 2158, a V1V2-specific monoclonal Ab (mAb), which binds the V2i epitope in the underbelly region of V1V2 while allosterically promoting the binding of broadly neutralizing mAb PG9 to its V2 apex epitope in vitro. Results: Rabbit groups immunized with the DNA vaccine and uncomplexed or complexed UFO-BG.ΔV3 proteins (DNA/UFO-UC or IC) displayed similar profiles of Env- and V1V2-binding Abs but differed from the rabbits receiving the DNA vaccine and uncomplexed or complexed V1V2-2J9C proteins (DNA/V1V2-UC or IC), which generated more cross-reactive V1V2 Abs without detectable binding to gp120 or gp140 Env. Notably, the DNA/UFO-UC vaccine elicited neutralizing Abs against some heterologous tier 1 and tier 2 viruses from different clades, albeit at low titers and only in a fraction of animals, whereas the DNA/V1V2-UC or IC vaccines did not. In comparison with the DNA/UFO-UC group, the DNA/UFO-IC group showed a trend of higher neutralization against TH023.6 and a greater potency of V1V2-specific Ab-dependent cellular phagocytosis (ADCP) but failed to neutralize heterologous viruses. Conclusion: These data demonstrate the capacity of V1V2-2J9C-encoding DNA vaccine in combination with UFO-BG.ΔV3, but not V1V2-2J9C, protein vaccines, to elicit homologous and heterologous neutralizing activities in rabbits. The elicitation of neutralizing and ADCP activities was modulated by delivery of UFO-BG.ΔV3 complexed with V2i mAb 2158.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Vaccines, DNA , Animals , Rabbits , HIV Antibodies , Antigen-Antibody Complex , Vaccination , Antibodies, Neutralizing , Epitopes , DNA
7.
Nat Commun ; 14(1): 6710, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872202

ABSTRACT

The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.


Subject(s)
Anti-HIV Agents , HIV Fusion Inhibitors , HIV Infections , HIV-1 , Humans , HIV-1/physiology , Anti-HIV Agents/therapeutic use , HIV Envelope Protein gp120/genetics
8.
Proc Natl Acad Sci U S A ; 120(20): e2221247120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155897

ABSTRACT

The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Broadly Neutralizing Antibodies , Macaca mulatta , Viremia/prevention & control , Complement System Proteins , HIV Antibodies , Antibodies, Neutralizing
9.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131729

ABSTRACT

The HIV-1 entry inhibitor temsavir prevents CD4 from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir-resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveal that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad-antiviral activity.

10.
mBio ; 14(2): e0034123, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36946726

ABSTRACT

Transplacental transfer of maternal antibodies provides the fetus and newborn with passive protection against infectious diseases. While the role of the highly conserved neonatal Fc receptor (FcRn) in transfer of IgG in mammals is undisputed, recent reports have suggested that a second receptor may contribute to transport in humans. We report poor transfer efficiency of plant-expressed recombinant HIV-specific antibodies, including engineered variants with high FcRn affinity, following subcutaneous infusion into rhesus macaques close to parturition. Unexpectedly, unlike those derived from mammalian tissue culture, plant-derived antibodies were essentially unable to cross macaque placentas. This defect was associated with poor Fcγ receptor binding and altered Fc glycans and was not recapitulated in mice. These results suggest that maternal-fetal transfer of IgG across the three-layer primate placenta may require a second receptor and suggest a means of providing maternal antibody treatments during pregnancy while avoiding fetal harm. IMPORTANCE This study compared the ability of several human HIV envelope-directed monoclonal antibodies produced in plants with the same antibodies produced in mammalian cells for their ability to cross monkey and mouse placentas. We found that the two types of antibodies have comparable transfer efficiencies in mice, but they are differentially transferred across macaque placentas, consistent with a two-receptor IgG transport model in primates. Importantly, plant-produced monoclonal antibodies have excellent binding characteristics for human FcRn receptors, permitting desirable pharmacokinetics in humans. The lack of efficient transfer across the primate placenta suggests that therapeutic plant-based antibody treatments against autoimmune diseases and cancer could be provided to the mother while avoiding transfer and preventing harm to the fetus.


Subject(s)
HIV Infections , Placenta , Pregnancy , Female , Mice , Humans , Animals , Maternal-Fetal Exchange , Macaca mulatta , Immunoglobulin G , Receptors, Fc/metabolism , Antibodies, Monoclonal/metabolism , Histocompatibility Antigens Class I , HIV Infections/metabolism , Mammals/metabolism
11.
Nat Commun ; 13(1): 903, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173151

ABSTRACT

V2p and V2i antibodies (Abs) that are specific for epitopes in the V1V2 region of the HIV gp120 envelope (Env) do not effectively neutralize HIV but mediate Fc-dependent anti-viral activities that have been correlated with protection from, or control of HIV, SIV and SHIV infections. Here, we describe a novel molecular toolbox that allows the discrimination of antigenically and functionally distinct polyclonal V2 Ab responses. We identify different patterns of V2 Ab induction by SHIV infection and three separate vaccine regimens that aid in fine-tuning an optimized immunization protocol for inducing V2p and V2i Abs. We observe no, or weak and sporadic V2p and V2i Abs in non-vaccinated SHIV-infected NHPs, but strong V2p and/or V2i Ab responses after immunization with a V2-targeting vaccine protocol. The V2-focused vaccination is superior to both natural infection and to immunization with whole Env constructs for inducing functional V2p- and V2i-specific responses. Strikingly, levels of V2-directed Abs correlate inversely with Abs specific for peptides of V3 and C5. These data demonstrate that a V1V2-targeting vaccine has advantages over the imprecise targeting of SIV/SHIV infections and of whole Env-based immunization regimens for inducing a more focused functional V2p- and V2i-specific Ab response.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Epitopes/immunology , Female , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccination
12.
Nat Commun ; 13(1): 662, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115533

ABSTRACT

Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C') activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78-88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C' functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C' functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Complement System Proteins/immunology , HIV Antibodies/immunology , HIV-1/immunology , Phagocytosis/immunology , Viremia/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , Broadly Neutralizing Antibodies/metabolism , Broadly Neutralizing Antibodies/pharmacology , Cell Line, Tumor , Complement System Proteins/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , HIV Antibodies/metabolism , HIV Antibodies/pharmacology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macaca mulatta , Male , Phagocytosis/drug effects , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Viremia/blood , Viremia/prevention & control
13.
PLoS Pathog ; 18(1): e1010183, 2022 01.
Article in English | MEDLINE | ID: mdl-34986207

ABSTRACT

Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.


Subject(s)
Gene Products, env/immunology , HIV Antibodies/pharmacology , HIV Infections , Viral Load/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , HIV Antibodies/immunology , HIV-1/immunology , Humans , Immunization, Passive , Immunoglobulin Constant Regions , Mice , Mucous Membrane
14.
Front Immunol ; 12: 757811, 2021.
Article in English | MEDLINE | ID: mdl-34745131

ABSTRACT

Induction of broadly neutralizing antibodies (bNAbs) is a major goal for HIV vaccine development. HIV envelope glycoprotein (Env)-specific bNAbs isolated from HIV-infected individuals exhibit substantial somatic hypermutation and correlate with T follicular helper (Tfh) responses. Using the VC10014 DNA-protein co-immunization vaccine platform consisting of gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject that developed bNAbs, we determined the characteristics of the Env-specific humoral response in vaccinated rhesus macaques in the context of CD4+ T cell depletion. Unexpectedly, both CD4+ depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. There was no deficit in protection from SHIV challenge, no diminution of titers of HIV Env-specific cross-clade binding antibodies, antibody dependent cellular phagocytosis, or antibody-dependent complement deposition in the CD4+ depleted animals. These collective results suggest that in the presence of diminished CD4+ T cell help, HIV neutralizing antibodies were still generated, which may have implications for developing effective HIV vaccine strategies.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies/biosynthesis , HIV Antibodies/biosynthesis , Macaca mulatta/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/immunology , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Broadly Neutralizing Antibodies/immunology , CD4-Positive T-Lymphocytes/immunology , Cross Reactions , Female , Germinal Center/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp160/immunology , HIV-1/immunology , Immunization, Secondary , Male , Phagocytosis , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccine Development , Vaccines, Synthetic , Viral Load , env Gene Products, Human Immunodeficiency Virus/immunology
15.
mBio ; 12(5): e0174321, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634936

ABSTRACT

The role of the complement system in HIV-1 immunity and pathogenesis is multifaceted, and an improved understanding of complement activities mediated by HIV-1-specific antibodies has the potential to inform and advance clinical development efforts. A seminal nonhuman primate challenge experiment suggested that complement was dispensable for the protective effect of the early broadly neutralizing antibody (bnAb) b12, but recent experiments have raised questions about the breadth of circumstances under which this conclusion may hold. Here, we reassess the original observation using Fc variants of IgG1 b12 that enhance complement activity and report that complement fixation on recombinant antigen, virions, and cells and complement-dependent viral and cellular lysis in vitro vary among bnAbs. Specifically, while the clinically significant V3 glycan-specific bnAb 10-1074 demonstrates activity, we found that b12 does not meaningfully activate the classical complement cascade. Consistent with avid engagement by C1q and its complex system of regulatory factors, these results suggest that complement-mediated antibody activities demonstrate a high degree of context dependence and motivate revisiting the role of complement in antibody-mediated prevention of HIV-1 infection by next-generation bnAbs in new translational studies in animal models. IMPORTANCE Given the suboptimal outcome of VRC01 antibody-mediated prevention of HIV-1 infection in its first field trial, means to improve diverse antiviral activities in vivo have renewed importance. This work revisits a loss-of-function experiment that investigated the mechanism of action of b12, a similar antibody, and finds that the reason why complement-mediated antiviral activities were not observed to contribute to protection may be the inherent lack of activity of wild-type b12, raising the prospect that this mechanism may contribute in the context of other HIV-specific antibodies.


Subject(s)
Complement System Proteins , HIV Antibodies/immunology , HIV Infections/immunology , Immunoglobulin G/immunology , Animals , Antibodies, Neutralizing/immunology , Broadly Neutralizing Antibodies , Complement C1q/genetics , HEK293 Cells , HIV-1/immunology , Humans , Macaca mulatta
16.
Vaccine ; 39(39): 5607-5614, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34400018

ABSTRACT

The repertoire of antibodies (Abs) produced upon vaccination against a particular antigenic site is rarely studied due to the complexity of the immunogens. We received such an opportunity when one rhesus macaque was immunized six times at 0, 4, 10, 16, 32, and 143 weeks with C4-447 peptide containing the 8-mer epitope for human monoclonal Ab (mAb) 447-52D specific to the V3 region of gp120 HIV-1. Strong anti-V3 antibody responses reached 50% binding titer in serum of 10-5 at week 10 that declined to 10-3 by week 70. After an additional boost of C4-447 peptide at week 143, titers rebounded to 10-5 at week 146, or 2.7 years after the first immunization. Using the blood sample at week 146, we produced 41 V3-specific recombinant mAbs by single B cell isolation and cloning. Sequence analysis revealed 21B cell lineages, single and clonally related, based on immunoglobulin gene usage and CDR3s. The broad repertoire of Abs directed to a small antigenic site shows the targeting potency of a vaccine-elicited immune response in rhesus macaques.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing , Cell Lineage , Epitopes , HIV Antibodies , HIV Envelope Protein gp120 , Humans , Macaca mulatta
17.
Front Public Health ; 9: 690017, 2021.
Article in English | MEDLINE | ID: mdl-34123998

ABSTRACT

Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies , Epitopes , HIV Antibodies , HIV Infections/drug therapy , env Gene Products, Human Immunodeficiency Virus
18.
J Immunol ; 206(6): 1266-1283, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33536254

ABSTRACT

The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Disease Models, Animal , Female , Gene Products, env/immunology , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , Humans , Immunogenicity, Vaccine , Macaca mulatta , Male , Phagocytosis/immunology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load
19.
J Immunol ; 206(5): 999-1012, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33472907

ABSTRACT

Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 µg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites/immunology , Cell Line , Epitopes/immunology , HIV Infections/immunology , Humans , Immunization/methods , Immunoglobulin Variable Region/immunology , Macaca mulatta/immunology , THP-1 Cells/immunology , Vaccination/methods , Viral Envelope Proteins/immunology
20.
J Int AIDS Soc ; 23(10): e25628, 2020 10.
Article in English | MEDLINE | ID: mdl-33073530

ABSTRACT

INTRODUCTION: The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti-retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti-HIV drug delivery to mucosal sites and for viral prevention. METHODS: We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non-human primate model in vivo and a pre-clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF-Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. RESULTS: Effective Grft release and retention in mucosal tissues from the SF-Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF-Grft inserts did not cause any inflammatory responses or changes in local microbiota. CONCLUSIONS: We demonstrated that in vivo delivery of SF-Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user-friendly HIV prevention modality to address the global disparity in HIV infection.


Subject(s)
Anti-HIV Agents/administration & dosage , Fibroins , HIV Infections/prevention & control , Lectins/administration & dosage , Plant Lectins/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Animals , Anti-HIV Agents/analysis , Anti-HIV Agents/pharmacokinetics , Biocompatible Materials , Cervix Uteri/virology , Colon/virology , Female , Gastrointestinal Microbiome/drug effects , HIV/drug effects , Humans , Lectins/analysis , Lectins/pharmacokinetics , Macaca mulatta , Microbiota/drug effects , Mucous Membrane/chemistry , Pharmaceutical Vehicles , Plant Lectins/analysis , Plant Lectins/pharmacokinetics , Rectum/chemistry , Rectum/microbiology , Rectum/virology , Vagina/chemistry , Vagina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...